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SUMMARY

A methodology and attendant computer code have been developed and are described to computationally
simulate the uncertain behavior of composite structures. The uncertain behavior includes buckling loads, stress

concentration factors, displacements, stress/strain, etc., which are the consequences of the inherent uncertainties

(scatter) in the primitive (independent random) variables (constituent, ply, laminate, and structural) that describe

the composite structures. The computer code is IPACS (Integrated Probabilistic Assessment of Composite

Structures). IPACS simulates both composite mechanics and composite structural behavior. Application to

probabilistic composite mechanics is illustrated by its use to evaluate the uncertainties in the major Poisson's

ratio and in laminate stiffness and strength. IPACS application to probabilistic structural analysis is illustrated

by its use to evaluate the uncertainties in the buckling of a composite plate, stress concentration factor in a

composite panel, and the vertical displacement and ply stress in a composite aircraft wing segment. IPACS

application to probabilistic design is illustrated by its use to assess the thin composite shell (pipe).

INTRODUCTION

Probabilistic composite mechanics and probabilistic composite structural analysis are formal methods which
are used to quantify the scatter that is observed in composite material properties and structural response. The

observed scatter in composite material properties is the range of measured values in modulus, strength, thermal

expansion coefficient, etc., while that in structural response is the range of measured values for displacement,

frequency, buckling load, etc. The formal methods relate the scatter and respective probability of occurrence in

the observed values to the corresponding scatter in the physical parameters which make up the composite and/or

the composite structure. For example, these parameters include constituent material properties, fabrication

process variables, structural component geometry, and any other variables which contribute to the composite

behavior and/or structural response.

The development of these types of formal methods has been the subject of considerable research at NASA

Lewis Research Center. This research has led to computational simulation methods and attendant computer

codes for relating the scatter (uncertainties) in the composite properties or composite structural response to the

corresponding uncertainties in the respective parameters (primitive variables) which are used to describe the

composite in all its inherent scales: micro, macro, laminate, and structural. A more recent continuing develop-
ment is the computer code IPACS (Integrated Probabilistic Assessment of Composite Structures). The objective

of this paper is to summarize the status of IPACS and to present results of select examples to illustrate its

application to evaluate the uncertainties in composites and in composite structures. The fundamental concepts

driving the methodology are briefly described for completeness. The significance and/or relevance of the results

obtained to actual design problems are noted.



FUNDAMENTALCONCEPTS

The fundamental concepts/assumptions in the probabilistic composite mechanics described herein are

(1) the scatter in all the primitive variables, which describe the composite behavior, can be represented by well

known probabilistic distribution, (2) the values for the primitive variables can be randomly selected from the
known distributions for a specific composite, (3) these values can be used in composite mechanics to predict

composite behavior, and (4) the whole process can be repeated many times to obtain sufficient information to

develop the distribution in order to quantify the probability of occurrence for the ply properties, laminate

properties, or structural responses. This process is analogous to making and testing composites. The probabilis-

tic distributions represent properties of available materials that the composite can be made from. The composite

mechanics represent the physical experiment and the process repetition represents several experiments. Sub-

sequent statistical analysis of the data is the same for both approaches. The primitive variables which describe

the composite are identified by examining the fabrication process. A schematic depicting the fabrication process

for an aircraft wing top cover is shown in figure 1.

PROBABILISTIC COMPOSITE MECHANICS

Probabilistic composite mechanics is key to probabilistic structural analysis. Probabitistic composite
mechanics from micromechanics to laminate theory is described in reference 1. Briefly it is a combination of

composite mechanics and probability concepts. Respective schematics of the computational simulation of the

physics are shown in figures 2 and 3. Representative results from composite micromechanics (ref. 2) are shown

in figure 4 for the ply longitudinal compressive strength. These results show that the data point lies in the
80 percent probability of occurrence. Of course several other data points will be required to determine the

distribution of the test data. It is interesting to observe from the sensitivity factors that: (1) the fiber volume

ratio (FVR), the matrix compressive strength (SMC), the matrix shear modulus (GM), and the fiber misalign-

ment (THETA 15) affect the ply longitudinal compressive strength in that order of sensitivity; (2) the fiber shear

modulus and the matrix shear strength have comparatively negligible effect; (3) the single experimental point is

near the 80 percent probability; and (4) the level of probability does not affect the magnitude of the sensitivities

(0.0001 versus 0.5).

Representative results of probabilistic laminate behavior simulation are summarized in table I for three
different laminates. Scanning the ranges in this table, it can be observed that the mean values of the (scatter not

known) experimental data is within the simulated scatter for all the values except one Poisson's ratio and two
shear moduli. Both of which are sensitive to the boundary and loading conditions. The simulation scatter can

be modified to include these data points by modeling the specimen in its entirety. Laminate thermal expansion

coefficient results are shown in figure 5. Just about every primitive variable affects this laminate property

except the fiber volume ratio. These sensitivity factors are not affected by probability levels.

PROBABILISTIC STRUCTURAL ANALYSIS

Probabilistic structural analysis is performed by using IPACS (Integrated Probabilistic Assessment of

Composite Structures). A schematic of the physics integrated into IPACS is shown in figure 6 while a block

diagram of its constituent modules is shown in figure 7. As can be seen in figure 6, IPACS consists of a

combination of two major modules. (1) NESSUS (ref. 3) for probabilistic structural analysis and PICAN

(ref. 2) for probabilistic composite mechanics. IPACS is used to evaluate the scatter in several structures as is
described below.
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CompositePlateBuckling

RepresentativeresultsfromapplyingIPACSto simulatebucklingof compositeplatesareshownin fig-
ure8. Themostsignificantpointto observein thisfigureis thattheplateswith theasteriskrequiredprobabilis-
tic simulationof thesupportfixity aswill bediscussedlaterto increasethesimulatedresultsupperboundin
orderto includetheexperimentalvalues.Thefixity of thesupportswassimulatedby assuminga 10percent
end-momentanda5 percentscatteraboutthis 10percentfixity. Theconclusionis thatexperimentalresultscan
beboundedby includinguncertaintiesin all theprimitivevariablesthatdescribethecompositestructure.

StressConcentrationFactor

An interestingproblemincompositestructuresis stressconcentrationfactorsin openholes.IPACSwas
usedto evaluatethescatterin the Stress Concentration Factor (SCF) in a composite panel with a center hole as

shown in figure 9. Results obtained for the SCF are shown in figure 10. These results were obtained by

assuming 2 and 5 percent scatter in the participating (primitive) variables that describe the physics of the prob-

lem. In figure 10, results are also shown for comparison with experimental data, an independent source simula-

tion (independent source simulation same as experimental data (ref. 5)) and from a closed form solution. It is

worthy of note that the IPACS results with 2 percent scatter in the primitive-variables bound the data and that

the results from the closed form solution over-predict the stress concentration factor. It is not known what

scatter was used to obtain the independent source results.

The important point to be made is that the IPACS results are obtained by using the whole panel while those

for the closed form solution are only at a point. In a limited way these results underline the importance of

modeling the whole structure to properly account for boundary conditions rather than evaluating responses by

considering only a local region which is the traditional approach. Cumulative distribution function comparisons

are shown in figure 11 for 1.5 percent scatter. The comparisons are excellent and lend credence to the simu-

lation capability in IPACS. The corresponding sensitivity factors for the 2 percent scatter are shown in fig-

ure 12. Only four of the forty factors used have significant effect on the stress concentration factor. All four of
these contribute to the stiffness of the panel. The important observation is that IPACS can handle composite

scatter with numerous primitive variables inherent in fiber composites.

Another interesting stress concentration problem is that depicted in figure 13. What is important in this

case is that it became necessary to include uncertainties in the out-of-plane axial load eccentricity in order to

shift the distribution to the right to match the data. The sensitivity factors are shown in figure 14. The

eccentricity is dominant.

Composite Wing Section

Aircraft wings are current candidates for composites application. The uncertainties in an assumed wing

segment shown in figure 15, are simulated by using IPACS. This section consisted of composite skins with

three-internal spars and three-internal frames as shown by the interrupted lines in the plan view. The composite

system, wing geometry, loading conditions and uncertainties assumed are summarized in fi_mare 15. The IPACS

finite element model consisted of 840 nodes and 908 quadrilateral elements.

The range of uncertainty predicted by IPACS for the transverse (vertical) displacement is shown in fig-

ure 16, where a computer plot of the finite element model is also shown. As can be seen, 3 times out of 10 000

the displacement will be less than 4 in. while 3 times out of 10 000 it will be greater than 7 in. The bounded

range is very useful for the following important reasons: (1) static tests for qualifying the wing segment will

produce results in this range and will be consistent with the uncertainties in the primitive variables which are



usedto describethewingand(2) the7-in.dimensionis criticalin sizingactuatorsto preventdisplacements
from growingbeyondthis range.

The sensitivity factors for the transverse displacement are shown in figure 17. Several factors influence the

lower bound of the displacement while the pressure is the most dominant factor for the upper bound. This is a

very interesting and perhaps an expected result: "The upper bounds of the scatter are mainly influenced by

uncertainties in the loading conditions."

Corresponding results for the highest longitudinal ply stress are shown in figure 18 for the range of the
scatter in terms of cumulative distribution function. Only about 3 times out of 10 000 the stress will be less

than about 30 ksi or greater than about 55 ksi. The sensitivity factors for the ply longitudinal stress are shown

in figure 19. The stringer misalignment influences the lower bound of the stress scatter. This factor did no___t

influence the displacement. Only the pressure influences the upper bound of the stress scatter. It is doubtful

that this would be intuitively expected. It demonstrates the wealth of information provided by the probabilistic

structural analysis or, more generally, the computational simulation of probabilistic structural behavior.

Composite Thin Shells

A composite stiffened thin shell (pipe) is probabilistically assessed against probabilistic design criteria. The

diameter of the cylindrical shell is 2 ft and it is 20 ft long as shown in figure 20. The structure is modeled by
588 4-node shell elements and 600 active nodes (6 dof per node). The pipe consists of composite skin, three

composite horizontal circumferential frames, and four composite vertical stringers. The laminate configuration

for skin, frames, and stringers are [+45/021+45102/+4510190]s , [024], and [024], respectively. The pipe is assumed
to be supported at one end by a set of translational and torsional spring constants and free at another end. This

type of structure is representative of off-shore risers. When the spring constant approaches infinity, a com-
pletely f'txed boundary condition is simulated. If the spring constants are set to be zero, it represents a free

boundary condition. For a given set of spring constants, partially fixed boundary condition is modeled. The

pipe is subjected to axial, lateral, and torsional loads at its free end as shown in figure 21.

The uncertain variables are identified at constituent, ply and structural levels. At constituent, 17 material

properties for graphite fiber and 12 material properties for epoxy matrix of skin, frames and stringers are
modeled as uncertain variables. Their respective probability distribution type and associated parameters are

listed in table II. At ply level, the fabrication variables (fiber volume ratio, void volume ratio, ply orientation,

ply thickness) are treated as random variables. Their statistics are shown in table III. At structural level, spring
constants, which simulates a partially fixed boundary condition, are assigned by a probability distribution to

reflect respective uncertainties. Their statistics are shown in table IV.

In the following, the composite pipe is assessed/checked against two design criteria namely clearance and
delamination. The results and discussions are described.

(1) Clearance Assessment - A failure (violation of design criterion) occurs when the displacement at the
free end in the lateral direction is greater than the allowable value. In this assessment, acceptable failure

probability is chosen to be 10-3. From the static analysis, the probabilistic displacement at the free end in the
lateral direction was simulated as shown in figure 22. The critical displacement corresponding to 10-3 failure

probability is 5.2 in. If the allowable displacement is 6 in., then the critical displacement falls in the safe

region. It means the clearance criterion is satisfied. If the allowable displacement is 5 in., then critical dis-

placement falls in the failure region. The clearance design is violated and the pipe needs to be redesigned. In

the IPACS sensitivity analysis, it is found that the fiber modulus, fiber volume ratio, ply thickness of the skin,
as well as the random loads in lateral direction have the most contribution to the failure probability as shown in

figure 23.
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(2)DelaminationAssessment- Delaminationbuckling (refs. 2 and 6) interlaminar occurs when the ply

stress is greater than the ply delamination strength. From IPACS analysis, the relationship between the ply

interlaminar shear stress S and the independent random variables X is obtained as shown in equation (1).

N N

S= a o + E aiXi + _-, b'rX2
i=1 i=1

(1)

where %, ai, b i are constants; N is number of independent random variables. The ply delamination strength

SDLll C is shown in equation (2).

SD1.dlC = 10Slm + 2.5Smla (2)

where

and

(3)

(4)

where Kf and K v are fiber volume ratio and void volume ratio respectively; Gfl 2 and G m are fiber and

matrix shear modulus; SmT and Srns are the matrix tensile and shear strength. Defining a limit state function
G as

G = SDIdl ¢ - S (5)

If G is less than 0, it indicates that laminate stress is greater than the delamination buckling strength. There-

fore, laminate buckling by delamination will occur. The probability of G <_0, com_uted by FPI (Fast Probabi-
lity Integrator), is 0.012 which is greater than the acceptable failure probability (10-"). From sensitivity

analysis, eight most influential random variables which have the major contribution to the failure probability are

identified as shown in figure 24. It shows that matrix shear strength is the most important one (about 60 per-

cent) followed by the ply thickness (about 40 percent). By controlling, adjusting the mean and standard devia-

tion of those important independent random variables, redesign can be achieved most efficiently. For example,

if the coefficient of variation (scatter) of the intra ply shear strength can be reduced from 5 to 2.5 percent, the

failure probability is reduced to 0.005 which is more than 50 percent reduction improvement by reliability. A

safe design can be accomplished through this (controlling of important variables) procedure.

The four different and important structural examples previously described demonstrate the breadth and

depth of the IPACS computer code to probabilistically assess inherent uncertainties in composite structures. The

results from these three examples are evidence of the maturity of the methodology, the status of the IPACS
computer code and in a limited way, the effectiveness of IPACS for. (1) application to the design of composite

structures and (2) assessment of their reliability.
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CONCLUSIONS

Formal methods and a computer code IPACS for integrated probabilistic assessment of composite structures

were described. Select examples for probabilistic composite mechanics and probabilistie structural analysis were

presented to demonstrate the status of the development of the code and its applications. Results from these

examples (composite plate buckling, stress concentration factors, structural response of an aircraft/segment wing,

and probabilistie design assessment of a thin composite pipe) illustrate that IPACS can be used to quantify the

uncertainties in composite structural behavior from the inherent uncertainties in the various parameters that

define the composite structure. In addition, the methodology can be used to evaluate sensitivity factors which

influence composite structural response. Boundary conditions are important in composite plates with certain

laminate configurations. Parameters contributing to stiffness are important in stress concentration factors.

While several factors influence the lower bounds of the vertical displacement and ply stress of an aircraft wing

segment, only the pressure dominates the upper bounds of the scatter. Delamination buckling in thin composite

shells is controlled mainly by matrix shear strength and ply thickness. Collectively, the results demonstrate that
the IPACS computer code has matured to the point that it can be very useful for the design and reliability

assessment of composite structure, s.

REFERENCES

1. Chamis, C.C.; and Murthy, P.L.N.: ProbabUistic Composite Analysis. First NASA Advanced Composites

Technology Conference, PL 2, NASA CP-3104-PT-2, 1991, pp. 891-900.

2. Mase, G.T.; Murthy, P.L.N.; and Charnis, C.C.: Probabilistic Micromechanics and Macromechanics of

Polymer Matrix Composites. NASA TM-103669, 1991.

3. Chamis, C.C.: Probabilistic Structural Analysis Methods for Space Propulsion System Components. NASA

TM-88861, 1986.

4. Shiao, M.C.; and Chamis, C.C.: Probabilistic Evaluation of Fuselage-Type Composite Structures. NASA
TM-105881, 1992.

5. Lenoe, E.M.; and Neal, D.M.: Effect of Variability of Design Parameters on Stress Concentration Estimates.

Proceeding of the Array Symposium on Solid Mechanics; Composite Materials - The Influence of
Mechanics of Failure on Design. Army Materials and Mechanics Research Center, Watertown, MA, 1976,

pp. 171-190.

6. Murthy, P.L.N.; and Chamis, C.C.: Integrated Composite Analyzer (ICAI¢): Users and Programmers
Manual. NASA TP-2515, 1986.

7. Chamis, C.C.; Lark, R.F.; and Sinclair, J.H.: An Integrated Theory for Predicting the Hygrothermo-

mechanical Response of Advanced Composite Structural Components. NASA TM-73812, 1977.

8. Chamis, C.C.: Buckling of Anisotropic Plates. J. Struct. Div., vol. 95, no. ST10, 1969, pp. 2119-2139.

6



TABLE I.--PICAN VERIFICATION FOR LAMINATE STIFFNESS

Laminate

[0/-+452/0/-+45]s

Long. modulus (Msi)

Trans. modulus (Msi)

Shear modulus (Msi)

Major Poisson's ratio

[oi_*45/o_9o/%
Long. modulus (Msi)

Tram. modulus (Msi)

Shear modulus (Msi)

Major Poisson's ratio

[(0/-+45/90)21 s

Long. modulus (Msi)

Trans. modulus (Msi)

Shear modulus (Msi)

Major Poisson's ratio

Lower bound

(95% confidence)

5.48

2.76

3.34

.771

11.49

3.85

1.42

.305

6.27

6.27

2.38

.310

Mean

6.31

3.16

3.85

.792

13.27

4.40

1.63

.312

7.22

7.22

2.74

.315

Experimental

value a

6.30

3.08

3.21

.803

13.00

4.20

1.50

.325

6.68

6.62

2.34

.350

Upper bound

(95% confidence)

7.12

3.54

4.38

.813

15.08

4.93

1.84

.318

8.16

8.16

3.10

.320

aReference 7.

TABLE II.--MATERIAL PROPERTIES AT CONSTITUENT LEVEL FOR BOTH

SKIN AND STRINGERS

Unit Distribution Mean Coefficient of

type variation

Eft i Msi

El2 2 Msi

Gfl 2 Msi

G f23 Msi

vfl2 ---

v f23 ---

aft I ppmPF

ol.22 ppm/"F

pf lb/in. 3

Nf ---

df in.

Cf Btu in./OF

Kft 1 Btu in./hr,5 n.2/°F

Kt_ Btu in./hrfin.2lOF

Kt3 3 Btu in.thrtin.2/°F

Sir Ksi

Sfc Ksi

E m Msi

G m Msi

Vlll ....

ctm ppn'd_F

Pm lb/in-3

C m Btu/in./°F

K m Btu in./hrfin.2/°F

S:mT Ksi

Sm¢ Ksi

Sins Ksi

f3m it_finJl % moist

D m in.3/see

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Constant

Normal

31.0

2.0

2.0

1.0

0.2

0.25

-0.55

5.6

0.063

10 000

0.0003

0.05

I

Normal

Normal

Normal

Normal

Weibull

Weibull

Normal

0.17

58o i
58

58 I
4OO

4OO

0.5

Normal

Normal

Normal

Normal

Normal

Normal

Weibull

Weibu]l

Weibu]l

Normal

Normal

0.185

0.35

42.8

0.0443

0.25

1.25

15

35

13

0.004

0.002
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f3/r

vvr

Op

tpsk

tpst

TABLE III._FABRICATION VARIABLES

Unit

deg
in.

in.

AT PLY LEVEL

Distribution Mean

type

Normal 0.60

.02

.00

.005

_ .02

Coefficent of
variation

0.05
.05

.9 (stdv)

.05

.05

KcTR

KcTO
Fx

Fy
Mxx

TABLE IV._UNCERTAINTIES IN THE

STRUCTURAL LEVEL

Unit Distribution

type

lbfm. Normal

lb-in./rad.

kips
kips

kips-fl _

Mean

30E+06
12E+02

288
5.76

576

Coefficientof

variation

0.20
.20
.05

.05

.05
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